Year 6

Multiply One-digit Numbers with Decimal Places Challenge Cards

Multiply One-digit Numbers with Decimal Places

Pavel says, "I can use 4 × 23 to multiply 0.04 × 23."
 Explain how Pavel could use 4 × 23 to multiply 0.04 × 23.
 Write a real-life example to illustrate your explanation.

Multiply One-digit Numbers with Decimal Places

2. Nikita needs to find all the single-digit decimal numbers up to 2 decimal places and whole numbers whose product is 3.6.

Work alone or with a partner to help Nikita.

Multiply One-digit Numbers with Decimal Places

3. George needs to find all the single-digit decimal numbers up to 2 decimal places and whole numbers whose product is 1.5.

Work alone or with a partner to help George.

Multiply One-digit Numbers with Decimal Places

4. Pavel needs to find all the single-digit decimal numbers up to 2 decimal places and whole numbers whose product is 6.4.

Work alone or with a partner to help Pavel.

Multiply One-digit Numbers with Decimal Places

5. Nikita says, "4.7 cannot be the product of a one-digit number up to two decimal places and a whole number because 47 is a prime number."

Work alone or with a partner to explain why Nikita is not correct.

Multiply One-digit Numbers with Decimal Places

6. George asks, "If 0.03 × 16 = 0.48, then what other numbers, with up to 2 decimal places, can I find whose product is 0.48 using this calculation?"

Multiply One-digit Numbers with Decimal Places

7. Pavel asks, "If 0.07 × 48 = 3.36, then what other numbers, with up to 2 decimal places, can I find whose product is 3.36 using this calculation?"

Multiply One-digit Numbers with Decimal Places

8. Nikita asks, "If 0.6 × 239 = 143.4, then what other numbers, with up to 2 decimal places, can I find whose product is 143.4 using this calculation?"

Multiply One-digit Numbers with Decimal Places

10. George has 4 digit cards.

2

4

7

9

Find the largest and smallest product using all of the above digits in the following four boxes:

Multiply One-digit Numbers with Decimal Places

9. George has 4 digit cards.

3

5

6

8

Find the largest and smallest product using three of the above digits in the following three boxes:

Year 6 Multiply Fractions **Answers**

multiply 0.04 × 23.

Multiple real-life examples, e.g. Pavel buys 23 pencils that cost £0.04 each. How much do they cost altogether?

$$£0.04 \times 23 = £0.92$$

2. Nikita needs to find all the single-digit decimal numbers up to 2 decimal places and whole numbers whose product is 3.6.

0.6 × 6	0.09 × 40
0.06 × 60	0.1×36
0.4 × 9	0.01×360
0.04 × 90	0.05 × 72
0.9 × 4	

3. George needs to find all the single-digit decimal numbers up to 2 decimal places and whole numbers whose product is 1.5.

1. Explain how Pavel could use 4 × 23 to 4. Pavel needs to find all the single-digit 7. Pavel asks, "If 0.07 × 48 = 3.36, decimal numbers up to 2 decimal places and whole numbers whose product is 6.4.

0.8 × 8	0.02 × 320
0.08 × 80.0	0.1×64
0.4 × 16	0.01×640
0.04 × 160	0.05 × 128
0.2 × 32	

5. Nikita says, "4.7 cannot be the product of a one-digit number up to two decimal places and a whole number because 47 is a prime number."

$$94 \times 0.05 = 4.7$$

6. George asks, "If $0.03 \times 16 = 0.48$, then what other numbers, with up to 2 decimal places, can I find whose product is 0.48 using this calculation?"

then what other numbers, with up to 2 decimal places, can I find whose product is 3.36 using this calculation?"

8. Nikita asks, "If $0.6 \times 239 = 143.4$, then what other numbers, with up to 2 decimal places, can I find whose product is 143.4 using this calculation?"

9. Find the largest and smallest product using three of the above digits in the following three boxes:

$$0.08 \times 65 = 5.2, 0.03 \times 56 = 1.68$$

10. Find the largest and smallest product using all of the above digits in the following four boxes:

$$0.09 \times 742 = 66.78, 0.02 \times 479 = 9.58$$