## Year 6:

 <br> <br> \section*{<br> \section*{Order and <br> <br> \section*{<br> \section*{Order and <br> <br> \section*{<br> \section*{Order and <br> <br> <br> <br> <br> Comporse Froctions <br> <br> <br> <br> <br> Comporse Froctions <br> <br> <br> <br> <br> Comporse Froctions <br> <br> <br> <br> <br> Mastery Challenge Cards <br> <br> <br> <br> <br> Mastery Challenge Cards <br> <br> <br> <br> <br> Mastery Challenge Cards <br> <br> <br> twinkl <br> <br> <br> twinkl <br> <br> <br> twinkl <br> <br> <br> -} <br> <br> <br> -} <br> <br> <br> -}2. Nikita has to compare these two fractions:

$$
\frac{9}{13} \text { and } \frac{22}{30}
$$

Explain how Nikita might do this.
Try to find several ways to compare the fractions.



Explain how George might do this.
Try to find several ways to compare the fractions.

4. Pavel has to order these fractions from smallest to largest:

$$
\frac{2}{5}, \frac{2}{7}, \frac{3}{10}
$$

Explain how Pavel might do this.
Try to find several ways to compare the fractions.


Year 6: Order and Compare Fractions
Mastery Challenge Cards
6. George has to order these fractions from smallest to largest:

## $\frac{7}{12}, \frac{8}{15}, \frac{4}{9}$

Explain how George might do this.
Try to find several ways to compare the fractions.

5. Nikita has to order these fractions from smallest to largest:

$$
\frac{5}{6}, \frac{3}{4}, \frac{2}{3}, \frac{7}{9}
$$

Explain how Nikita might do this.
Try to find several ways to compare the fractions.


## Year 6: Order and Compare Fractions

Mastery Challenge Cards
7. Pavel has to compare these two fractions:


Explain how Pavel might do this.
Try to find several ways to compare the fractions.

8. Nikita has to compare these two fractions:

## $$
\frac{18}{5} \text { and } \frac{11}{3}
$$

Explain how Nikita might do this.
Try to find several ways to compare the fractions.

Year 6: Order and Compare Fractions
Mastery Challenge Cards
10. Nikita has three fractions.


Which could be the odd one out?

9. George has three fractions.


## Year 6: Order and Compare Fractions Answers

1. Pavel has to compare these two fractions:

$$
\frac{2}{5} \text { and } \frac{4}{9}
$$

- Convert to fractions with the same denominator. The lowest common multiple is 45 so $\frac{2}{5}=\frac{18}{45}, \frac{4}{9}=\frac{20}{45}$, which means that $\frac{2}{5}<\frac{4}{9}$
- Convert bopth fractions to decimals: $\frac{2}{5}=0.4$, $\frac{4}{9}=0.444$, so $\frac{2}{5}<\frac{4}{9}$.
- $\frac{2}{5}=\frac{4}{10}$, and $\frac{4}{9}>\frac{4}{10}$, so $\left.\frac{4}{9}\right\rangle \frac{2}{5}$.

2. Nikita has to compare these two fractions:

$$
\frac{9}{13} \text { and } \frac{22}{30}
$$

- Convert to fractions with the same denominator. The lowest common multiple is 390 , so $\frac{9}{13}=\frac{270}{390}, \frac{22}{30}=\frac{286}{390}$, which means that $\frac{9}{13}<\frac{22}{30}$
- Begin to convert to decimals using formal division method, working to each decimal place in turn: $\frac{9}{13}=0.69, \frac{22}{30}=0.73$, so $\frac{9}{13}<\frac{22}{30}$.

3. George has to compare these two fractions:

$$
\frac{8}{15} \text { and } \frac{11}{23}
$$

- $\frac{8}{15}$ is greater than half, ${ }_{23}$ is less than half,
so $\frac{8}{15}>\frac{11}{23}$
- Convert to fractions with the same denominator (345). $\frac{8}{15}=\frac{184}{345}, \frac{11}{23}=\frac{165}{345}$, so $\frac{8}{15}$ $>\frac{11}{23}$
- 3. Begin to convert to decimals using formal division method, working to each decimal place in turn: $\frac{8}{15}=0.53, \frac{11}{23}=0.48$ so $\frac{8}{15}>\frac{11}{23}$.

4. Pavel has to order these fractions from smallest to largest:

$$
\frac{2}{5}, \frac{2}{7}, \frac{3}{10}
$$

- Convert to a common denominator (70): $\frac{27}{70}, \frac{20}{70}, \frac{21}{70}$, so $\frac{2}{7}, \frac{3}{10}, \frac{2}{5}$.
- Convert to decimals: $0.4\left(\frac{2}{5}\right), 0.28\left(\frac{2}{7}\right)$, $0.3\left(\frac{3}{10}\right)$, so $\frac{1}{4}, \frac{2}{7}, \frac{3}{10}, \frac{2}{5}$.
- Draw bars:


5. Nikita has to order these fractions from smallest to largest:

$$
\frac{5}{6}, \frac{3}{4}, \frac{2}{3}, \frac{7}{9}
$$

- Convert to a common denominator (36): $\frac{30}{36}, \frac{27}{36}, \frac{24}{36}, \frac{28}{36}$, so $\frac{2}{3}, \frac{3}{4}, \frac{7}{9}, \frac{5}{6}$.
- Convert to decimals: $0.83\left(\frac{5}{6}\right), 0.75\left(\frac{3}{4}\right)$, $0.66\left(\frac{2}{3}\right), 0.77\left(\frac{7}{9}\right)$, so $\frac{2}{3}, \frac{3}{4}, \frac{7}{9}, \frac{5}{6}$.
- Draw bars:



## Year 6: Order and Compare Fractions Answers

6. George has to order these fractions from smallest to largest:

$$
\frac{7}{12}, \frac{8}{15}, \frac{4}{9}
$$

- Convert to a common denominator (180): : $105, \frac{96}{180}, \frac{80}{180}, \frac{8}{180}$, so $\frac{4}{9}, \frac{8}{15}, \frac{7}{12}$.
- Convert to equivalents with even denominators: $\frac{7}{12}, \frac{16}{30}, \frac{8}{14}$. Each of these are $\frac{1}{2}+\frac{1}{12}, \frac{1}{2}+\frac{1}{30}, \frac{1}{2}+\frac{1}{14}$, so using knowledge of ordering unit fractions $\frac{8}{15}, \frac{4}{7}, \frac{7}{12}$. (This method can be used as each fraction is just above $\frac{1}{2}$.)

7. Pavel has to compare these two fractions:

$$
\frac{9}{4} \text { and } \frac{16}{7}
$$

- Convert to fractions with the same denominator (28). $\frac{9}{4}=\frac{63}{28}, \frac{16}{7}=\frac{64}{28}$, so $\frac{9}{4}<\frac{16}{7}$.
- Convert to mixed fractions: $\frac{9}{4}=2 \frac{1}{4}, \frac{16}{7}=$ $2 \frac{2}{7}$, as $\frac{1}{4}=\frac{2}{8}$ and $\frac{2}{8}<\frac{2}{7}, 2 \frac{1}{4}<2 \frac{2}{7}$.

8. Nikita has to compare these two fractions:

$$
\frac{18}{5} \text { and } \frac{11}{3}
$$

- Convert to fractions with the same denominator (15). $\frac{18}{5}=\frac{54}{15}, \frac{11}{3}=\frac{55}{15}$, so $\frac{18}{5}<\frac{11}{3}$.
- Convert to mixed fractions, then decimals: $\frac{18}{5}=3 \frac{3}{5}=3.6, \frac{11}{3}=3 \frac{2}{3}=3.66$, so $\frac{18}{5}<\frac{11}{3}$.

9. George has three fractions.

$$
\frac{25}{12}, \frac{45}{21}, \frac{32}{17}
$$

Which could be the odd one out?

- $\frac{32}{17}<2$, whereas $\frac{25}{12}>2$ and $\frac{45}{21}>2$.
- Other answers possible.

10. Nikita has three fractions.

$$
\frac{32}{7}, \frac{44}{8}, \frac{63}{10}
$$

Which could be the odd one out?

- $\frac{44}{8}=5 \frac{1}{2}$, so it is the only fraction that is a whole number and a half.
- Other answers possible.

